Строительный портал - NikolskyAdm

Теория вероятности формулы и примеры решения задач. Основы теории вероятностей и математической статистики Теория вероятности доступным языком

Раздел 12. Теория вероятностей.

1. Введение

2. Простейшие понятия теории вероятностей

3. Алгебра событий

4. Вероятность случайного события

5. Геометрические вероятности

6. Классические вероятности. Формулы комбинаторики.

7. Условная вероятность. Независимость событий.

8. Формула полной вероятности и формулы Байеса

9. Схема повторных испытаний. Формула Бернулли и её асимптотика

10. Случайные величины (СВ)

11. Ряд распределения ДСВ

12. Интегральная функция распределения

13. Функция распределения НСВ

14. Плотность вероятности НСВ

15. Числовые характеристики случайных величин

16. Примеры важных распределений СВ

16.1. Биномиальное распределение ДСВ.

16.2. Распределение Пуассона

16.3. Равномерное распределение НСВ.

16.4. Нормальное распределение.

17. Предельные теоремы теории вероятностей.

Введение

Теория вероятностей, подобно многим другим математическим дисциплинам, развивалась из потребностей практики. При этом, изучая реальный процесс, приходилось создавать абстрактную математическую модель реального процесса. Обычно учитывают главные, наиболее существенные движущие силы реального процесса, отбрасывая из рассмотрения второстепенные, которые называются случайными. Конечно, что считать главным, а что второстепенным,- отдельная задача. Решение этого вопроса определяет уровень абстракции, простоту или сложность математической модели и уровень адекватности модели реальному процессу. В сущности, любая абстрактная модель является результатом двух противостоящих устремлений: простоты и адекватности реальности.

Например, в теории стрельбы разработаны достаточно простые и удобные формулы для определения траектории полёта снаряда из орудия, расположенного в точке (рис. 1).


В определённых условиях упомянутая теория является достаточной, например, при массированной артподготовке.

Однако ясно, что если из одного орудия при одинаковых условиях произвести несколько выстрелов, то траектории будут хотя и близкими, но все же отличающимися. И если размер цели мал по сравнению с областью рассеивания, то возникают специфические вопросы, связанные именно с влиянием факторов, неучтённых в рамках предлагаемой модели. При этом учёт дополнительных факторов приведёт к слишком сложной модели, пользоваться которой практически невозможно. К тому же, этих случайных факторов бывает много, природа их чаще всего неизвестна.



В приведённом примере такими специфическими вопросами, выходящими за рамки детерминированной модели, являются, например, следующие: сколько надо произвести выстрелов, чтобы с определённой уверенностью (например, на ) гарантировать поражение цели? как надо провести пристрелку, чтобы на поражение цели затратить наименьшее количество снарядов? и т.п.

Как мы увидим в дальнейшем, слова «случайный», «вероятность» станут строгими математическими терминами. Вместе с тем они весьма распространены в обычной разговорной речи. При этом считается, что прилагательное «случайный» является противопоставлением «закономерному». Однако, это не так, ибо природа устроена таким образом, что случайные процессы обнаруживают закономерности, но при определённых условиях.

Основное условие называется массовостью.

Например, если подбросить монету, то нельзя предсказать, что выпадает, герб или цифра,- можно лишь угадать. Однако, если эту монету подбросить большое число раз, что доля выпадений герба будет не сильно отличается от некоторого числа, близкого к 0,5 (в дальнейшем это число мы назовем вероятностью). Причем, с увеличением числа подбрасываний отклонение от этого числа будет уменьшаться. Это свойство называется устойчивостью средних показателей (в данном случае - доли гербов). Надо сказать, что на первых шагах теории вероятностей, когда надо было на практике убедиться в наличии свойства устойчивости, даже большие учёные не считали за труд провести самостоятельно проверку. Так, известен опыт Бюффона, который подбросил монету 4040 раз, и герб выпал 2048 раз, следовательно, доля (или относительная частота) выпадения герба равна 0,508, что близко интуитивно к ожидаемому числу 0,5.

Поэтому обычно даётся определение предмета теории вероятностей как раздела математики, изучающего закономерности массовых случайных процессов.

Надо сказать, что, несмотря на то, что наибольшие достижения теории вероятностей относятся к началу прошлого века, в особенности благодаря аксиоматическому построению теории в работах А.Н. Колмогорова (1903-1987), интерес к изучению случайностей проявился давно.

Сначала интересы были связаны с попытками применить числовой подход к азартным играм. Первые достаточно интересные результаты теории вероятностей принято связывать с работами Л. Пачоли (1494г), Д. Кардано (1526) и Н. Тартальи (1556).

Позже Б. Паскаль (1623-1662), П. Ферма (1601-1665), Х. Гюйгенс (1629-1695) заложили основы классической теории вероятностей. В начале 18 века Я. Бернулли (1654-1705) формирует понятие вероятности случайного события как отношение числа благоприятствующих шансов к числу всех возможных. На использовании понятия меры множества строили свои теории Э. Борель (1871-1956), А. Ломницкий (1881-1941), Р. Мизес (1883-1953).

Теоретико-множественная точка зрения в наиболее законченном виде была изложена в 1933г. А.Н. Колмогоровым в его монографии «Основные понятия теории вероятностей». Именно с этого момента теория вероятностей становится строгой математической наукой.

Большой вклад в развитие теории вероятностей внесли русские математики П.Л. Чебышёв (1821-1894), А.А. Марков (1856-1922), С.Н. Бернштейн (1880-1968) и другие.

Теория вероятностей бурно развивается и в настоящее время.

Простейшие понятия теории вероятностей

Как любая математическая дисциплина, теория вероятностей начинается с введения простейших понятий, которые не определяются, а лишь поясняются.

Одним из основных первичных понятий является опыт. Под опытом понимается некоторый комплекс условий, которые могут воспроизводиться неограниченное число раз. Каждую реализацию этого комплекса и назовем опытом или испытанием. Результаты опыта могут быть различными, в этом и проявляется элемент случайности. Различные результаты или исходы опыта называются событиями (точнее случайными событиями). Таким образом, при осуществлении опыта может произойти то или иное событие. Другими словами, случайное событие – это исход опыта, который при осуществлении опыта может произойти (появиться) или не произойти.

Опыт будем обозначать буквой , а случайные события обозначаются обычно заглавными буквами

Часто в опыте можно заранее выделить его исходы, которые можно назвать простейшими, которые нельзя разложить на более простые. Такие события называются элементарными событиями (или случаями).

Пример 1. Пусть подбрасывается монета. Исходами опыта являются: выпадение герба (обозначим это событие буквой ); выпадение цифры (обозначим ). Тогда можно записать: опыт ={подбрасывание монеты}, исходы: Ясно, что элементарные события в данном опыте. Иначе говоря, перечисление всех элементарных событий опыта полностью его описывает. По этому поводу будем говорить, что опыт есть пространство элементарных событий, и в нашем случае опыт кратко можно записать в виде: ={подбрасывание монеты}={Г;Ц}.

Пример 2 . ={монета подбрасывается дважды}= Здесь приведено словесное описание опыта и перечисление всех элементарных событий: означает, что сначала при первом подбрасывании монеты выпал герб, при втором – тоже герб; означает, что при первом подбрасывании монеты выпал герб, при втором цифра и т.д.

Пример 3. В системе координат в квадрат бросаются точки. В этом примере элементарными событиями являются точки с координатами которые удовлетворяют приведенным неравенствам. Кратко это записывается следующим образом:

Двоеточие в фигурных скобках означает, что состоит из точек но не любых, а только тех, которые удовлетворяют условию (или условиям), указанным после двоеточия (в нашем примере это неравенства).

Пример 4. Монета подбрасывается до первого выпадения герба. Другими словами, подбрасывание монеты продолжается до тех пор, пока не выпадет герб. В этом примере элементарные события перечислить можно, хотя их бесконечное число:

Заметим, что в примерах 3 и 4 пространство элементарных событий насчитывает бесконечное число исходов. В примере 4 их можно перечислить, т.е. пересчитать. Такое множество называется счетным. В примере 3 пространство является несчетным.

Введем в рассмотрение еще два события, которые присутствуют в любом опыте и которые имеют большое теоретические значение.

Назовем событие невозможным, если в результате опыта оно обязательно не произойдет. Будем его обозначать знаком пустого множества . Наоборот, событие, которое в результате опыта обязательно произойдёт называется достоверным. Достоверное событие обозначается так же, как и само пространство элементарных событий – буквой .

Например, при подбрасывании игральной кости событие {выпало меньше 9 очков} - достоверное, а событие {выпало ровно 9 очков} невозможное.

Итак, пространство элементарных событий может задаваться словесным описанием, перечислением всех его элементарных событий, заданием правил или условий, по которым получаются все его элементарные события.

Алгебра событий

До сих пор мы говорили лишь об элементарных событиях как непосредственных результатах опыта. Однако в рамках опыта можно говорить и о других случайных событиях, кроме элементарных.

Пример 5. При подбрасывании игральной кости, кроме элементарных событий выпадений соответственно единицы, двойки,…, шестерки, можно говорить о других событиях: (выпадение четного числа), (выпадение нечетного числа), (выпадение числа, кратного трем), (выпадение числа, меньшего 4) и т.п. В данном примере указанные события, кроме словесного задания, можно задать перечислением элементарных событий:

Образование новых событий из элементарных, а также из других событий осуществляется с помощью операций (или действий) над событиями.

Определение. Произведением двух событий и называется событие, состоящее в том, что в результате опыта произойдет и событие ,и событие , т. е произойдут оба события вместе (одновременно).

Знак произведения (точку) часто не ставят:

Определение. Суммой двух событий называется событие, состоящее в том, что в результате опыта произойдет или событие ,или событие ,или оба вместе (одновременно).

В обоих определениях мы намеренно подчеркнули союзы и и или -сцелью привлечь внимание читателя к своей речи при решении задач. Если мы произносим союз «и», то речь идет о произведении событий; если произносится союз «или», то события надо складывать. При этом заметим что союз «или» в обиходной речи часто используется в смысле исключения одного из двух: «только или только ». В теории вероятностей такое исключение не предполагается: и ,и , и означают появление события

Если задано перечислением элементарных событий, то сложные события с помощью указанных операций получить просто. Для получения надо найти все элементарные события, принадлежащие обоим событиям, если таковых нет, то Сумму событий также составить несложно: надо взять любое из двух событий и добавить к нему те элементарные события из другого события, которые не входят в первое.

В примере 5 получаем, в частности

Введенные операции называются бинарными, т.к. определены для двух событий. Большое значение имеет следующая унарная операция (определенная для одного события): событие называется противоположным событию если оно состоит в том, что в данном опыте событие не произошло. Из определения ясно, что всякое событие и ему противоположное обладают следующими свойствами: Введённая операция называется дополнением события А.

Отсюда следует, что если задано перечислением элементарных событий, то, зная задание события ,легко получить оно состоит из всех элементарных событий пространства которые не принадлежат В частности, для примера 5 событие

Если нет скобок, то устанавливается следующий приоритет в выполнении операций: дополнение, умножение, сложение.

Итак, с помощью введённых операций пространство элементарных событий пополняется другими случайными событиями, которые образуют так называемую алгебру событий.

Пример 6. По мишени стрелок произвёл три выстрела. Рассмотрим события = {стрелок попал в мишень при i-м выстреле}, i = 1,2,3.

Составим из этих событий (не забудем и о противоположных ) некоторые события. Пространных комментариев не приводим; полагаем, что читатель проведёт их самостоятельно.

Событие В = {все три выстрела попали в мишень}. Подробнее: В = {и первый, и второй, и третий выстрелы попали в мишень}. Использовали союз и, следовательно, события перемножаются:

Аналогично:

С = {ни один из выстрелов не попал в цель}

Е = {один выстрел достиг мишени}

Д = {мишень поражена при втором выстреле} = ;

F = {мишень поражена двумя выстрелами}

Н = {в мишени окажется хотя бы одно попадание}

Как известно, в математике большое значение имеет геометрическая интерпретация аналитических объектов, понятий и формул.

В теории вероятностей удобно наглядное представление (геометрическая интерпретация) опыта, случайных событий и операций над ними в виде так называемых диаграмм Эйлера-Венна . Суть состоит в том, что всякий опыт отождествляется (интерпретируется) с бросанием точек в некоторый квадрат. Точки бросаются наугад, так что у всех точек имеются одинаковые шансы попасть в любое место этого квадрата. Квадрат определяет рамки рассматриваемого опыта. Каждое событие в рамках опыта отождествляется с некоторой областью квадрата. Иначе говоря, осуществление события означает попадание случайной точки внутрь области, обозначенной буквой Тогда операции над событиями легко интерпретируются геометрически (рис.2)

А:

А + В: всякая

штриховка

На рис.2 а) для наглядности событие А выделено вертикальной штриховкой, событие В - горизонтальной. Тогда операции умножения соответствует двойная штриховка - событию соответствует та часть квадрата которая покрыта двойной штриховкой. При этом, если то и называются несовместными событиями. Соответственно операции сложения соответствует любая штриховка- событие означает часть квадрата, заштрихованная любой штриховкой – вертикальной, горизонтальной и двойной. На рис.2 б) показано событие ему соответствует заштрихованная часть квадрата - все, что не входит в область Введенные операции обладают следующими основными свойствами, некоторые из которых справедливы для одноименных операций над числами, но есть и специфические.

1 0 . коммутативность умножения;

2 0 . коммутативность сложения;

3 0 . ассоциативность умножения;

4 0 . ассоциативность сложения,

5 0 . дистрибутивность умножения относительно сложения,

6 0 . дистрибутивность сложения относительно умножения;

9 0 . законы двойственности де Моргана,

10 0 .

1 .A .A+ .A· =A, 1 .A+ . 1 .A· = , 1 .A+ =

Пример 7. Иван и Петр договорились встретиться на временном промежутке в Т час, например, (0,Т). При этом они условились, что каждый из них, придя на встречу, ждет другого не более час.

Придадим этому примеру геометрическую интерпретацию. Обозначим: время прихода на встречу Ивана; время прихода на встречу Петра. Согласно договоренности: 0 . Тогда в системе координат получаем: = Нетрудно заметить, что в нашем примере пространство элементарных событий представляет собой квадрат. 1


0 x соответствует та часть квадрата, которая расположена выше этой прямой.Аналогично, второму неравенству y≤x+ и; и не работает, если не работают все элементы, т.е. .Таким образом, второй закон двойственности де Моргана: реализуется при параллельном соединении элементов.

Приведённый пример показывает, почему теория вероятностей находит большое применение в физике, в частности, в расчетах надежности реальных технических устройств.

Мама мыла раму


Под занавес продолжительных летних каникул пришло время потихоньку возвращаться к высшей математике и торжественно открыть пустой вёрдовский файл, чтобы приступить к созданию нового раздела – . Признаюсь, нелегко даются первые строчки, но первый шаг – это пол пути, поэтому я предлагаю всем внимательно проштудировать вводную статью, после чего осваивать тему будет в 2 раза проще! Ничуть не преувеличиваю. …Накануне очередного 1 сентября вспоминается первый класс и букварь…. Буквы складываются в слоги, слоги в слова, слова в короткие предложения – Мама мыла раму. Совладать с тервером и математической статистикой так же просто, как научиться читать! Однако для этого необходимо знать ключевые термины, понятия и обозначения, а также некоторые специфические правила, которым и посвящён данный урок.

Но сначала примите мои поздравления с началом (продолжением, завершением, нужное отметить) учебного года и примите подарок. Лучший подарок – это книга, и для самостоятельной работы я рекомендую следующую литературу:

1) Гмурман В.Е. Теория вероятностей и математическая статистика

Легендарное учебное пособие, выдержавшее более десяти переизданий. Отличается доходчивостью и предельной простой изложения материала, а первые главы так и вовсе доступны, думаю, уже для учащихся 6-7-х классов.

2) Гмурман В.Е. Руководство к решению задач по теории вероятностей и математической статистике

Решебник того же Владимира Ефимовича с подробно разобранными примерами и задачами.

ОБЯЗАТЕЛЬНО закачайте обе книги из Интернета или раздобудьте их бумажные оригиналы! Подойдёт и версия 60-70-х годов, что даже лучше для чайников. Хотя фраза «теория вероятностей для чайников» звучит довольно нелепо, поскольку почти всё ограничивается элементарными арифметическими действиями. Проскакивают, правда, местами производные и интегралы , но это только местами.

Я постараюсь достичь той же ясности изложения, но должен предупредить, что мой курс ориентирован на решение задач и теоретические выкладки сведены к минимуму. Таким образом, если вам нужна развёрнутая теория, доказательства теорем (теорем-теорем!), пожалуйста, обратитесь к учебнику. Ну, а кто хочет научиться решать задачи по теории вероятностей и математической статистике в самые короткие сроки , следуйте за мной!

Для начала хватит =)

По мере прочтения статей целесообразно знакомиться (хотя бы бегло) с дополнительными задачами рассмотренных видов. На странице Готовые решения по высшей математике будут размещаться соответствующие pdf-ки с примерами решений. Также значительную помощь окажут ИДЗ 18.1 Рябушко (попроще) и прорешанные ИДЗ по сборнику Чудесенко (посложнее).

1) Суммой двух событий и называется событие которое состоит в том, что наступит или событие или событие или оба события одновременно. В том случае, если события несовместны , последний вариант отпадает, то есть может наступить или событие или событие .

Правило распространяется и на бОльшее количество слагаемых, например, событие состоит в том, что произойдёт хотя бы одно из событий , а если события несовместны то одно и только одно событие из этой суммы: или событие , или событие , или событие , или событие , или событие .

Примеров масса:

События (при броске игральной кости не выпадет 5 очков) состоит в том, что выпадет или 1, или 2, или 3, или 4, или 6 очков.

Событие (выпадет не более двух очков) состоит в том, что появится 1 или 2 очка .

Событие (будет чётное число очков) состоит в том, что выпадет или 2 или 4 или 6 очков.

Событие заключается в том, что из колоды будет извлечена карта красной масти (черва или бубна), а событие – в том, что будет извлечена «картинка» (валет или дама или король или туз).

Чуть занятнее дело с совместными событиями:

Событие состоит в том, что из колоды будет извлечена трефа или семёрка или семёрка треф. Согласно данному выше определению, хотя бы что-то – или любая трефа или любая семёрка или их «пересечение» – семёрка треф. Легко подсчитать, что данному событию соответствует 12 элементарных исходов (9 трефовых карт + 3 оставшиеся семёрки).

Событие состоит в том, что завтра в 12.00 наступит ХОТЯ БЫ ОДНО из суммируемых совместных событий , а именно:

– или будет только дождь / только гроза / только солнце;
– или наступит только какая-нибудь пара событий (дождь + гроза / дождь + солнце / гроза + солнце);
– или все три события появятся одновременно.

То есть, событие включает в себя 7 возможных исходов.

Второй столп алгебры событий:

2) Произведением двух событий и называют событие , которое состоит в совместном появлении этих событий, иными словами, умножение означает, что при некоторых обстоятельствах наступит и событие , и событие . Аналогичное утверждение справедливо и для бОльшего количества событий, так, например, произведение подразумевает, что при определённых условиях произойдёт и событие , и событие , и событие , …, и событие .

Рассмотрим испытание, в котором подбрасываются две монеты и следующие события:

– на 1-й монете выпадет орёл;
– на 1-й монете выпадет решка;
– на 2-й монете выпадет орёл;
– на 2-й монете выпадет решка.

Тогда:
и на 2-й) выпадет орёл;
– событие состоит в том, что на обеих монетах (на 1-й и на 2-й) выпадет решка;
– событие состоит в том, что на 1-й монете выпадет орёл и на 2-й монете решка;
– событие состоит в том, что на 1-й монете выпадет решка и на 2-й монете орёл.

Нетрудно заметить, что события несовместны (т.к. не может, например, выпасть 2 орла и в то же самое время 2 решки) и образуют полную группу (поскольку учтены все возможные исходы броска двух монет) . Давайте просуммируем данные события: . Как интерпретировать эту запись? Очень просто – умножение означает логическую связку И , а сложение – ИЛИ . Таким образом, сумму легко прочитать понятным человеческим языком: «выпадут два орла или две решки или на 1-й монете выпадет орёл и на 2-й решка или на 1-й монете выпадет решка и на 2-й монете орёл »

Это был пример, когда в одном испытании задействовано несколько объектов, в данном случае – две монеты. Другая распространенная в практических задачах схема – это повторные испытания , когда, например, один и тот же игральный кубик бросается 3 раза подряд. В качестве демонстрации рассмотрим следующие события:

– в 1-м броске выпадет 4 очка;
– во 2-м броске выпадет 5 очков;
– в 3-м броске выпадет 6 очков.

Тогда событие состоит в том, что в 1-м броске выпадет 4 очка и во 2-м броске выпадет 5 очков и в 3-м броске выпадет 6 очков. Очевидно, что в случае с кубиком будет значительно больше комбинаций (исходов), чем, если бы мы подбрасывали монету.

…Понимаю, что, возможно, разбираются не очень интересные примеры, но это часто встречающиеся в задачах вещи и от них никуда не деться. Помимо монетки, кубика и колоды карт вас поджидают урны с разноцветными шарами, несколько анонимов, стреляющих по мишени, и неутомимый рабочий, который постоянно вытачивает какие-то детали =)

Вероятность события

Вероятность события – это центральное понятие теории вероятностей. …Убийственно логичная вещь, но с чего-то надо было начинать =) Существует несколько подходов к её определению:

;
Геометрическое определение вероятности ;
Статистическое определение вероятности .

В данной статье я остановлюсь на классическом определении вероятностей, которое находит наиболее широкое применение в учебных заданиях.

Обозначения . Вероятность некоторого события обозначается большой латинской буквой , а само событие берётся в скобки, выступая в роли своеобразного аргумента. Например:


Также для обозначения вероятности широко используется маленькая буква . В частности, можно отказаться от громоздких обозначений событий и их вероятностей в пользу следующей стилистики::

– вероятность того, что в результате броска монеты выпадет «орёл»;
– вероятность того, что в результате броска игральной кости выпадет 5 очков;
– вероятность того, что из колоды будет извлечена карта трефовой масти.

Данный вариант популярен при решении практических задач, поскольку позволяет заметно сократить запись решения. Как и в первом случае, здесь удобно использовать «говорящие» подстрочные/надстрочные индексы.

Все уже давно догадались о числах, которые я только что записал выше, и сейчас мы узнаем, как они получились:

Классическое определение вероятности :

Вероятностью наступления события в некотором испытании называют отношение , где:

– общее число всех равновозможных , элементарных исходов этого испытания, которые образуют полную группу событий ;

– количество элементарных исходов, благоприятствующих событию .

При броске монеты может выпасть либо орёл, либо решка – данные события образуют полную группу , таким образом, общее число исходов ; при этом, каждый из них элементарен и равновозможен . Событию благоприятствует исход (выпадение орла). По классическому определению вероятностей: .

Аналогично – в результате броска кубика может появиться элементарных равновозможных исходов, образующих полную группу, а событию благоприятствует единственный исход (выпадение пятёрки). Поэтому: .ЭТОГО ДЕЛАТЬ НЕ ПРИНЯТО (хотя не возбраняется прикидывать проценты в уме).

Принято использовать доли единицы , и, очевидно, что вероятность может изменяться в пределах . При этом если , то событие является невозможным , если – достоверным , а если , то речь идёт о случайном событии.

! Если в ходе решения любой задачи у вас получилось какое-то другое значение вероятности – ищите ошибку!

При классическом подходе к определению вероятности крайние значения (ноль и единица) получаются посредством точно таких же рассуждений. Пусть из некой урны, в которой находятся 10 красных шаров, наугад извлекается 1 шар. Рассмотрим следующие события:

в единичном испытании маловозможное событие не произойдёт .

Именно поэтому Вы не сорвёте в лотерее Джек-пот, если вероятность этого события, скажем, равна 0,00000001. Да-да, именно Вы – с единственным билетом в каком-то конкретном тираже. Впрочем, бОльшее количество билетов и бОльшее количество розыгрышей Вам особо не помогут. ...Когда я рассказываю об этом окружающим, то почти всегда в ответ слышу: «но ведь кто-то выигрывает». Хорошо, тогда давайте проведём следующий эксперимент: пожалуйста, сегодня или завтра купите билет любой лотереи (не откладывайте!). И если выиграете... ну, хотя бы больше 10 килорублей, обязательно отпишитесь – я объясню, почему это произошло. За процент, разумеется =) =)

Но грустить не нужно, потому что есть противоположный принцип: если вероятность некоторого события очень близка к единице, то в отдельно взятом испытании оно практически достоверно произойдёт. Поэтому перед прыжком с парашютом не надо бояться, наоборот – улыбайтесь! Ведь должны сложиться совершенно немыслимые и фантастические обстоятельства, чтобы отказали оба парашюта.

Хотя всё это лирика, поскольку в зависимости от содержания события первый принцип может оказаться весёлым, а второй – грустным; или вообще оба параллельными.

Пожалуй, пока достаточно, на уроке Задачи на классическое определение вероятности мы выжмем максимум из формулы . В заключительной же части этой статьи рассмотрим одну важную теорему:

Сумма вероятностей событий, которые образуют полную группу, равна единице . Грубо говоря, если события образуют полную группу, то со 100%-й вероятностью какое-то из них произойдёт. В самом простом случае полную группу образуют противоположные события, например:

– в результате броска монеты выпадет орёл;
– в результате броска монеты выпадет решка.

По теореме:

Совершенно понятно, что данные события равновозможны и их вероятности одинаковы .

По причине равенства вероятностей равновозможные события часто называют равновероятными . А вот и скороговорка на определение степени опьянения получилась =)

Пример с кубиком: события противоположны, поэтому .

Рассматриваемая теорема удобна тем, что позволяет быстро найти вероятность противоположного события. Так, если известна вероятность того, что выпадет пятёрка, легко вычислить вероятность того, что она не выпадет:

Это гораздо проще, чем суммировать вероятности пяти элементарных исходов. Для элементарных исходов, к слову, данная теорема тоже справедлива:
. Например, если – вероятность того, что стрелок попадёт в цель, то – вероятность того, что он промахнётся.

! В теории вероятностей буквы и нежелательно использовать в каких-то других целях.

В честь Дня Знаний я не буду задавать домашнее задание =), но очень важно, чтобы вы могли ответить на следующие вопросы:

– Какие виды событий существуют?
– Что такое случайность и равновозможность события?
– Как вы понимаете термины совместность/несовместность событий?
– Что такое полная группа событий, противоположные события?
– Что означает сложение и умножение событий?
– В чём суть классического определения вероятности?
– Чем полезна теорема сложения вероятностей событий, образующих полную группу?

Нет, зубрить ничего не надо, это всего лишь азы теории вероятностей – своеобразный букварь, который довольно быстро уложится в голове. И чтобы это произошло как можно скорее, предлагаю ознакомиться с уроками

Теория вероятностей - математическая наука, позволяющая по вероятностям одних случайных событий находить вероятности других случайных событий, связанных каким-либо образом с первыми.

Утверждение о том, что какое-либо событие наступает с вероятностью , равной, например, ½, ещё не представляет само по себе окончательной ценности, так как мы стремимся к достоверному знанию. Окончательную познавательную ценность имеют те результаты теории вероятностей, которые позволяют утверждать, что вероятность наступления какого-либо события А весьма близка к единице или (что то же самое) вероятность не наступления события А весьма мала. В соответствии с принципом "пренебрежения достаточно малыми вероятностями" такое событие справедливо считают практически достоверным. Ниже (в разделе Предельные теоремы) показано, что имеющие научный и практический интерес выводы такого рода обычно основаны на допущении, что наступление или не наступление события А зависит от большого числа случайных, мало связанных друг с другом факторов. Поэтому можно также сказать, что теория вероятностей есть математическая наука, выясняющая закономерности, которые возникают при взаимодействии большого числа случайных факторов.

Предмет теории вероятностей.

Для описания закономерной связи между некоторыми условиями S и событием А, наступление или не наступление которого при данных условиях может быть точно установлено, естествознание использует обычно одну из следующих двух схем:

а) при каждом осуществлении условий S наступает событие А. Такой вид, например, имеют все законы классической механики, которые утверждают, что при заданных начальных условиях и силах, действующих на тело или систему тел, движение будет происходить однозначно определённым образом.

б) При условиях S событие А имеет определённую вероятность P (A / S), равную р. Так, например, законы радиоактивного излучения утверждают, что для каждого радиоактивного вещества существует определённая вероятность того, что из данного количества вещества за данный промежуток времени распадётся какое-либо число N атомов.

Назовем частотой события А в данной серии из n испытаний (то есть из n повторных осуществлений условий S) отношение h = m/n числа m тех испытаний, в которых А наступило, к общему их числу n. Наличие у события А при условиях S определённой вероятности, равной р, проявляется в том, что почти в каждой достаточно длинной серии испытаний частота события А приблизительно равна р.

Статистические закономерности, то есть закономерности, описываемые схемой типа (б), были впервые обнаружены на примере азартных игр, подобных игре в кости. Очень давно известны также статистические закономерности рождения, смерти (например, вероятность новорождённому быть мальчиком равна 0,515). Конец 19 в. и 1-я половина 20 в. отмечены открытием большого числа статистических закономерностей в физике, химии, биологии и т.п.

Возможность применения методов теории вероятностей к изучению статистических закономерностей, относящихся к весьма далёким друг от друга областям науки, основана на том, что вероятности событий всегда удовлетворяют некоторым простым соотношениям, о которых будет сказано ниже (см. раздел Основные понятия теории вероятностей). Изучение свойств вероятностей событий на основе этих простых соотношений и составляет предмет теории вероятностей.

Основные понятия теории вероятностей.

Наиболее просто определяются основные понятия теории вероятностей как математической дисциплины в рамках так называемой элементарной теории вероятностей. Каждое испытание Т, рассматриваемое в элементарной теорией вероятностей, таково, что оно заканчивается одним и только одним из событий E1, E2,..., ES (тем или иным, в зависимости от случая). Эти события называются исходами испытания. С каждым исходом Ek связывается положительное число рк - вероятность этого исхода. Числа pk должны при этом в сумме давать единицу. Рассматриваются затем события А, заключающиеся в том, что "наступает или Ei, или Ej,..., или Ek". Исходы Ei, Ej,..., Ek называются благоприятствующими А, и по определению полагают вероятность Р (А) события А, равной сумме вероятностей благоприятствующих ему исходов:

P (A) = pi + ps + … + pk. (1)

Частный случай p1 = p2 =... ps = 1/S приводит к формуле

Р (А) = r/s. (2)

Формула (2) выражает так называемое классическое определение вероятности, в соответствии с которым вероятность какого-либо события А равна отношению числа r исходов, благоприятствующих А, к числу s всех "равновозможных" исходов. Классическое определение вероятности лишь сводит понятие "вероятности" к понятию "равновозможности", которое остаётся без ясного определения.

Пример. При бросании двух игральных костей каждый из 36 возможных исходов может быть обозначен (i, j), где i - число очков, выпадающее на первой кости, j - на второй. Исходы предполагаются равновероятными. Событию А - "сумма очков равна 4", благоприятствуют три исхода (1; 3), (2; 2), (3; 1). Следовательно, Р (A) = 3/36 = 1/12.

Исходя из каких-либо данных событий, можно определить два новых события: их объединение (сумму) и совмещение (произведение). Событие В называется объединением событий A 1, A 2,..., Ar,-, если оно имеет вид: "наступает или A1, или А2,..., или Ar".

Событие С называется совмещением событий A1, А.2,..., Ar, если оно имеет вид: "наступает и A1, и A2,..., и Ar". Объединение событий обозначают знаком È, а совмещение - знаком Ç. Таким образом, пишут:

B = A1 È A2 È … È Ar, C = A1 Ç A2 Ç … Ç Ar.

События А и В называют несовместными, если их одновременное осуществление невозможно, то есть если не существует среди исходов испытания ни одного благоприятствующего и А, и В.

С введёнными операциями объединения и совмещения событий связаны две основные теоремы В. т. - теоремы сложения и умножения вероятностей.

Теорема сложения вероятностей. Если события A1, A2,..., Ar таковы, что каждые два из них несовместны, то вероятность их объединения равна сумме их вероятностей.

Так, в приведённом выше примере с бросанием двух костей событие В - "сумма очков не превосходит 4", есть объединение трёх несовместных событий A2, A3, A4, заключающихся в том, что сумма очков равна соответственно 2, 3, 4. Вероятности этих событий 1/36; 2/36; 3/36. По теореме сложения вероятность Р (В)равна

1/36 + 2/36 + 3/36 = 6/36 = 1/6.

Условную вероятность события В при условии А определяют формулой


что, как можно показать, находится в полном соответствии со свойствами частот. События A1, A2,..., Ar называются независимыми, если условная вероятность каждого из них при условии, что какие-либо из остальных наступили, равна его "безусловной" вероятности

Теорема умножения вероятностей. Вероятность совмещения событий A1, A2,..., Ar равна вероятности события A1,умноженной на вероятность события A2, взятую при условии, что А1 наступило,..., умноженной на вероятность события Ar при условии, что A1, A2,..., Ar-1 наступили. Для независимых событий теорема умножения приводит к формуле:

P (A1 Ç A2 Ç … Ç Ar) = P (A1) Ї P (A2) Ї … Ї P (Ar), (3)

то есть вероятность совмещения независимых событий равна произведению вероятностей этих событий. Формула (3) остаётся справедливой, если в обеих её частях некоторые из событий заменить на противоположные им.

Пример. Производится 4 выстрела по цели с вероятностью попадания 0,2 при отдельном выстреле. Попадания в цель при различных выстрелах предполагаются независимыми событиями. Какова вероятность попадания в цель ровно три раза?

Каждый исход испытания может быть обозначен последовательностью из четырёх букв [напр., (у, н, н, у) означает, что при первом и четвёртом выстрелах были попадания (успех), а при втором и третьем попаданий не было (неудача)]. Всего будет 2Ї2Ї2Ї2 = 16 исходов. В соответствии с предположением о независимости результатов отдельных выстрелов следует для определения вероятностей этих исходов использовать формулу (3) и примечание к ней. Так, вероятность исхода (у, н. н, н) следует положить равной 0,2Ї0,8Ї0,8Ї0,8 = 0,1024; здесь 0,8 = 1-0,2 - вероятность промаха при отдельном выстреле. Событию "в цель попадают три раза" благоприятствуют исходы (у, у, у, н), (у, у, н, у), (у, н, у, у). (н, у, у, у), вероятность каждого одна и та же:

0,2Ї0,2Ї0,2Ї0,8 =...... =0,8Ї0,2Ї0,2Ї0,2 = 0,0064;

следовательно, искомая вероятность равна

4Ї0,0064 = 0,0256.

Обобщая рассуждения разобранного примера, можно вывести одну из основных формул теории вероятностей: если события A1, A2,..., An независимы и имеют каждое вероятность р, то вероятность наступления ровно m из них равна

Pn (m) = Cnmpm (1 - p) n-m; (4)

здесь Cnm обозначает число сочетаний из n элементов по m. При больших n вычисления по формуле (4) становятся затруднительными. Пусть в предыдущем примере число выстрелов равно 100, и ставится вопрос об отыскании вероятности х того, что число попаданий лежит в пределах от 8 до 32. Применение формулы (4) и теоремы сложения даёт точное, но практически мало пригодное выражение искомой вероятности


Приближённое значение вероятности х можно найти по теореме Лапласа

причём ошибка не превосходит 0,0009. Найденный результат показывает, что событие 8 £ m £ 32 практически достоверно. Это самый простой, но типичный пример использования предельных теорем теории вероятностей.

К числу основных формул элементарной теории вероятностей относится также так называемая формула полной вероятности: если события A1, A2,..., Ar попарно несовместны и их объединение есть достоверное событие, то для любого события В его вероятность равна сумме


Теорема умножения вероятностей оказывается особенно полезной при рассмотрении составных испытаний. Говорят, что испытание Т составлено из испытаний T1, T2,..., Tn-1, Tn, есликаждый исход испытания Т есть совмещение некоторых исходов Ai, Bj,..., Xk, Yl соответствующих испытаний T1, T2,..., Tn-1, Tn. Из тех или иных соображений часто бывают известны вероятности

Нижегородский Государственный Технический Университет

им. А.Е.Алексеева

Реферат по дисциплине теория вероятности

Выполнила: Ручина Н.А гр 10МЕНз

Проверил: Гладков В.В

Нижний Новгород, 2011

    Теория вероятностей……………………………………

    Предмет теории вероятностей…………………………

    Основные понятия теории вероятностей……………

    Случайные события, вероятности событий…………………………………………………

    Предельные теоремы……………………………………

    Случайные процессы……………………………………

    Историческая справка…………………………………

Используемая литература…………………………………………

Теория вероятностей

Теория вероятностей - математическая наука, позволяющая по вероятностям одних случайных событий находить вероятности других случайных событий, связанных каким-либо образом с первыми.

Утверждение о том, что какое-либо событие наступает с вероятностью, равной, например 0,75, ещё не представляет само по себе окончательной ценности, так как мы стремимся к достоверному знанию. Окончательную познавательную ценность имеют те результаты теории вероятностей, которые позволяют утверждать, что вероятность наступления какого-либо событияА весьма близка к единице или (что то же самое) вероятность не наступления событияА весьма мала. В соответствии с принципом «пренебрежения достаточно малыми вероятностями» такое событие справедливо считают практически достоверным. Имеющие научный и практический интерес выводы такого рода обычно основаны на допущении, что наступление или не наступление событияА зависит от большого числа случайных, мало связанных друг с другом факторов. Поэтому можно также сказать, что теория вероятностей есть математическая наука, выясняющая закономерности, которые возникают при взаимодействии большого числа случайных факторов

Предмет теории вероятностей

Предмет теории вероятностей. Для описания закономерной связи между некоторыми условиямиS и событиемА, наступление или не наступление которого при данных условиях может быть точно установлено, естествознание использует обычно одну из следующих двух схем:

а) при каждом осуществлении условий S наступает событиеА. Такой вид, например, имеют все законы классической механики, которые утверждают, что при заданных начальных условиях и силах, действующих на тело или систему тел, движение будет происходить однозначно определённым образом.

б) При условиях S событиеА имеет определённую вероятностьP (A / S ), равнуюр. Так, например, законы радиоактивного излучения утверждают, что для каждого радиоактивного вещества существует определённая вероятность того, что из данного количества вещества за данный промежуток времени распадётся какое-либо числоN атомов.

Назовем частотой события А в данной серии изn испытаний (то есть изn повторных осуществлений условийS ) отношениеh = m/n числаm тех испытаний, в которыхА наступило, к общему их числуn. Наличие у событияА при условияхS определённой вероятности, равнойр, проявляется в том, что почти в каждой достаточно длинной серии испытаний частота событияА приблизительно равнар.

Статистические закономерности, то есть закономерности, описываемые схемой типа (б), были впервые обнаружены на примере азартных игр, подобных игре в кости. Очень давно известны также статистические закономерности рождения, смерти (например, вероятность новорождённому быть мальчиком равна 0,515). Конец 19 в. и 1-я половина 20 в. отмечены открытием большого числа статистических закономерностей в физике, химии, биологии и т.п.

Возможность применения методов теории вероятностей к изучению статистических закономерностей, относящихся к весьма далёким друг от друга областям науки, основана на том, что вероятности событий всегда удовлетворяют некоторым простым соотношениям. Изучение свойств вероятностей событий на основе этих простых соотношений и составляет предмет теории вероятностей.

Основные понятия теории вероятностей

Основные понятия теории вероятностей. Наиболее просто определяются основные понятия теории вероятностей, как математической дисциплины, в рамках так называемой элементарной теории вероятностей. Каждое испытаниеТ, рассматриваемое в элементарной теории вероятностей, таково, что оно заканчивается одним и только одним из событийE 1 , E 2 ,..., E S (тем или иным, в зависимости от случая). Эти события называются исходами испытания. С каждым исходомE k связывается положительное числор к - вероятность этого исхода. Числаp k должны при этом в сумме давать единицу. Затем рассматриваются событияА, заключающиеся в том, что «наступает илиE i , илиE j ,..., илиE k ». ИсходыE i , E j ,..., E k называются благоприятствующимиА, и по определению полагают вероятностьР (А ) событияА , равной сумме вероятностей благоприятствующих ему исходов:

P (A ) =p i +p s ++p k . (1)

Частный случай p 1 =p 2 =...p s =1/S приводит к формуле

Р (А ) =r/s. (2)

Формула (2) выражает так называемое классическое определение вероятности, в соответствии с которым вероятность какого-либо события А равна отношению числаr исходов, благоприятствующихА, к числуs всех «равновозможных» исходов. Классическое определение вероятности лишь сводит понятие «вероятности» к понятию «равновозможности», которое остаётся без ясного определения.

Пример. При бросании двух игральных костей каждый из 36 возможных исходов может быть обозначен (i ,j ), гдеi - число очков, выпадающее на первой кости,j - на второй. Исходы предполагаются равновероятными. СобытиюА - «сумма очков равна 4», благоприятствуют три исхода (1; 3), (2; 2), (3; 1). Следовательно,Р (A ) = 3/36= 1/12.

Исходя из каких-либо данных событий, можно определить два новых события: их объединение (сумму) и совмещение (произведение).

Событие В называется объединением событийA 1 , A 2 ,..., A r ,-, если оно имеет вид: «наступает илиA 1 , илиА 2 ,..., илиA r ».

Событие С называется совмещением событий A 1 , А. 2 ,..., A r , если оно имеет вид: «наступает иA 1 , и A 2 ,..., и A r ». Объединение событий обозначают знаком, а совмещение - знаком. Таким образом, пишут:

B = A 1 A 2  …  A r , C = A 1 A 2  …  A r .

События А иВ называют несовместными, если их одновременное осуществление невозможно, то есть если не существует среди исходов испытания ни одного благоприятствующего иА иВ.

С введёнными операциями объединения и совмещения событий связаны две основные теоремы теории вероятностей - теоремы сложения и умножения вероятностей.

Теорема сложения вероятностей: Если событияA 1 , A 2 ,...,A r таковы, что каждые два из них несовместны, то вероятность их объединения равна сумме их вероятностей.

Так, в приведённом выше примере с бросанием двух костей событие В - «сумма очков не превосходит 4», есть объединение трёх несовместных событийA 2 , A 3 , A 4 , заключающихся в том, что сумма очков равна соответственно 2, 3, 4. Вероятности этих событий 1/36; 2/36; 3/36. По теореме сложения вероятностьР (В ) равна

1/36 + 2/36 + 3/36 = 6/36 = 1/6.

События A 1 , A 2 ,...,A r называются независимыми, если условная вероятность каждого из них при условии, что какие-либо из остальных наступили, равна его «безусловной» вероятности.

Теорема умножения вероятностей: Вероятность совмещения событийA 1 , A 2 ,...,A r равна вероятности событияA 1 , умноженной на вероятность событияA 2 , взятую при условии, чтоА 1 наступило,..., умноженной на вероятность событияA r при условии, чтоA 1 , A 2 ,...,A r-1 наступили. Для независимых событий теорема умножения приводит к формуле:

P (A 1 A 2 …A r ) =P (A 1 ) · P (A 2 ) · … · P (A r ), (3)

то есть вероятность совмещения независимых событий равна произведению вероятностей этих событий. Формула (3) остаётся справедливой, если в обеих её частях некоторые из событий заменить на противоположные им.

Пример. Производится 4 выстрела по цели с вероятностью попадания 0,2 при отдельном выстреле. Попадания в цель при различных выстрелах предполагаются независимыми событиями. Какова вероятность попадания в цель ровно три раза?

Каждый исход испытания может быть обозначен последовательностью из четырёх букв [напр., (у, н, н, у) означает, что при первом и четвёртом выстрелах были попадания (успех), а при втором и третьем попаданий не было (неудача)]. Всего будет 2·2·2·2 = 16 исходов. В соответствии с предположением о независимости результатов отдельных выстрелов следует для определения вероятностей этих исходов использовать формулу (3) и примечание к ней. Так, вероятность исхода (у, н. н, н) следует положить равной 0,2·0,8·0,8·0,8 = 0,1024; здесь 0,8 = 1-0,2 - вероятность промаха при отдельном выстреле. Событию «в цель попадают три раза» благоприятствуют исходы (у, у, у, н), (у, у, н, у), (у, н, у, у). (н, у, у, у), вероятность каждого одна и та же:

0,2·0,2·0,2·0,8 =...... =0,8·0,2·0,2·0,2 = 0,0064;

следовательно, искомая вероятность равна

4·0,0064 = 0,0256.

Обобщая рассуждения разобранного примера, можно вывести одну из основных формул теории вероятностей: если события A 1 , A 2 ,..., A n независимы и имеют каждое вероятностьр, то вероятность наступления ровноm из них равна

P n (m ) = C n m p m (1 - p ) n-m ; (4)

здесь C n m обозначает число сочетаний изn элементов поm. При большихn вычисления по формуле (4) становятся затруднительными.

К числу основных формул элементарной теории вероятностей относится также так называемая формула полной вероятности : если событияA 1 , A 2 ,..., A r попарно несовместны и их объединение есть достоверное событие, то для любого событияВ его вероятность равна их сумме.

Теорема умножения вероятностей оказывается особенно полезной при рассмотрении составных испытаний. Говорят, что испытание Т составлено из испытанийT 1 , T 2 ,..., T n-1 , T n , если каждый исход испытанияТ есть совмещение некоторых исходовA i , B j ,..., X k , Y l соответствующих испытанийT 1 , T 2 ,..., T n-1 , T n . Из тех или иных соображений часто бывают известны вероятности

P (A i ), P (B j /A i ), …,P (Y l /A i B j …X k ). (5)

По вероятностям (5) с помощью теоремы умножения могут быть определены вероятности Р (Е ) для всех исходовЕ составного испытания, а вместе с тем и вероятности всех событий, связанных с этим испытанием. Наиболее значительными с практической точки зрения представляются два типа составных испытаний:

а) составляющие испытания не зависимы, то есть вероятности (5) равны безусловным вероятностям P (A i ), P (B j ),..., P (Y l );

б) на вероятности исходов какого-либо испытания влияют результаты лишь непосредственно предшествующего испытания, то есть вероятности (5) равны соответственно: P (A i ), P (B j /A i ),..., P (Y i / X k ). В этом случае говорят об испытаниях, связанных в цепь Маркова. Вероятности всех событий, связанных с составным испытанием, вполне определяются здесь начальными вероятностямиР (А i ) и переходными вероятностямиP (B j / A i ),..., P (Y l / X k ).

Основные формулы по теории вероятности

Формулы теории вероятностей.

1. Основные формулы комбинаторики

а) перестановки.

\б) размещения

в) сочетания .

2. Классическое определение вероятности.

Где- число благоприятствующих событиюисходов,- число всех элементарных равновозможных исходов.

3. Вероятность суммы событий

Теорема сложения вероятностей несовместных событий:

Теорема сложения вероятностей совместных событий:

4. Вероятность произведения событий

Теорема умножения вероятностей независимых событий:

Теорема умножения вероятностей зависимых событий:

,

    Условная вероятность события при условии, что произошло событие,

    Условная вероятность события при условии, что произошло событие.

Комбинаторика - это раздел математики, в котором изучаются вопросы о том, сколько различных комбинаций, подчиненных тем или иным условиям, можно составить из заданных объектов. Основы комбинаторики очень важны для оценки вероятностей случайных событий, т.к. именно они позволяют подсчитать принципиально возможное количество различных вариантов развития событий.

Основная формула комбинаторики

Пусть имеется k групп элементов, причем i-я группа состоит из ni элементов. Выберем по одному элементу из каждой группы. Тогда общее число N способов, которыми можно произвести такой выбор, определяется соотношением N=n1*n2*n3*...*nk.

Пример 1. Поясним это правило на простом примере. Пусть имеется две группы элементов, причем первая группа состоит из n1 элементов, а вторая - из n2 элементов. Сколько различных пар элементов можно составить из этих двух групп, таким образом, чтобы в паре было по одному элементу от каждой группы? Допустим, мы взяли первый элемент из первой группы и, не меняя его, перебрали все возможные пары, меняя только элементы из второй группы. Таких пар для этого элемента можно составить n2. Затем мы берем второй элемент из первой группы и также составляем для него все возможные пары. Таких пар тоже будет n2. Так как в первой группе всего n1 элемент, всего возможных вариантов будет n1*n2.

Пример 2. Сколько трехзначных четных чисел можно составить из цифр 0, 1, 2, 3, 4, 5, 6, если цифры могут повторяться?

Решение: n1=6 (т.к. в качестве первой цифры можно взять любую цифру из 1, 2, 3, 4, 5, 6), n2=7 (т.к. в качестве второй цифры можно взять любую цифру из 0, 1, 2, 3, 4, 5, 6), n3=4 (т.к. в качестве третьей цифры можно взять любую цифру из 0, 2, 4, 6).

Итак, N=n1*n2*n3=6*7*4=168.

В том случае, когда все группы состоят из одинакового числа элементов, т.е. n1=n2=...nk=n можно считать, что каждый выбор производится из одной и той же группы, причем элемент после выбора снова возвращается в группу. Тогда число всех способов выбора равно nk.Такой способ выбора носит название выборки с возвращением.

Пример. Сколько всех четырехзначных чисел можно составить из цифр 1, 5, 6, 7, 8?

Решение. Для каждого разряда четырехзначного числа имеется пять возможностей, значит N=5*5*5*5=54=625.

Рассмотрим множество, состоящие из n элементов. Это множество будем называть генеральной совокупностью.

Определение 1. Размещением из n элементов по m называется любой упорядоченный набор из m различных элементов, выбранных из генеральной совокупности в n элементов.

Пример. Различными размещениями из трех элементов {1, 2, 3} по два будут наборы (1, 2), (2, 1), (1, 3), (3, 1), (2, 3),(3, 2). Размещения могут отличаться друг от друга как элементами, так и их порядком.

Число размещений обозначается А, м от nи вычисляется по формуле:

Замечание: n!=1*2*3*...*n (читается: "эн факториал"), кроме того полагают, что 0!=1.

Пример 5. Сколько существует двузначных чисел, в которых цифра десятков и цифра единиц различные и нечетные?

Решение: т.к. нечетных цифр пять, а именно 1, 3, 5, 7, 9, то эта задача сводится к выбору и размещению на две разные позиции двух из пяти различных цифр, т.е. указанных чисел будет:

Определение 2. Сочетанием из n элементов по m называется любой неупорядоченный набор из m различных элементов, выбранных из генеральной совокупности в n элементов.

Пример 6. Для множества {1, 2, 3}сочетаниями являются {1, 2}, {1, 3}, {2, 3}.

Число сочетаний обозначается Cnm и вычисляется по формуле:

Определение 3. Перестановкой из n элементов называется любой упорядоченный набор этих элементов.

Пример 7a. Всевозможными перестановками множества, состоящего из трех элементов {1, 2, 3} являются: (1, 2, 3), (1, 3, 2), (2, 3, 1), (2, 1, 3), (3, 2, 1), (3, 1, 2).

Число различных перестановок из n элементов обозначается Pn и вычисляется по формуле Pn=n!.

Пример 8. Сколькими способами семь книг разных авторов можно расставить на полке в один ряд?

Решение: эта задача о числе перестановок семи разных книг. Имеется P7=7!=1*2*3*4*5*6*7=5040 способов осуществить расстановку книг.

Обсуждение. Мы видим, что число возможных комбинаций можно посчитать по разным правилам (перестановки, сочетания, размещения) причем результат получится различный, т.к. принцип подсчета и сами формулы отличаются. Внимательно посмотрев на определения, можно заметить, что результат зависит от нескольких факторов одновременно.

Во-первых, от того, из какого количества элементов мы можем комбинировать их наборы (насколько велика генеральная совокупность элементов).

Во-вторых, результат зависит от того, какой величины наборы элементов нам нужны.

И последнее, важно знать, является ли для нас существенным порядок элементов в наборе. Поясним последний фактор на следующем примере.

Пример. На родительском собрании присутствует 20 человек. Сколько существует различных вариантов состава родительского комитета, если в него должны войти 5 человек?

Решение: В этом примере нас не интересует порядок фамилий в списке комитета. Если в результате в его составе окажутся одни и те же люди, то по смыслу для нас это один и тот же вариант. Поэтому мы можем воспользоваться формулой для подсчета числа сочетаний из 20 элементов по 5.

Иначе будут обстоять дела, если каждый член комитета изначально отвечает за определенное направление работы. Тогда при одном и том же списочном составе комитета, внутри него возможно 5! вариантов перестановок, которые имеют значение. Количество разных (и по составу, и по сфере ответственности) вариантов определяется в этом случае числом размещений из 20 элементов по 5.

Геометрическое определение вероятности

Пусть случайное испытание можно представить себе как бросание точки наудачу в некоторую геометрическую область G (на прямой, плоскости или пространстве). Элементарные исходы – это отдельные точки G, любое событие – это подмножество этой области, пространства элементарных исходов G. Можно считать, что все точки G «равноправны» и тогда вероятность попадания точки в некоторое подмножество пропорционально его мере (длине, площади, объему) и не зависит от его расположения и формы.

Геометрическая вероятность события А определяется отношением: , где m(G), m(A) – геометрические меры (длины, площади или объемы) всего пространства элементарных исходов и события А.

Пример. На плоскость, разграфленную параллельными полосами шириной 2d, расстояние между осевыми линиями которых равно 2D, наудачу брошен круг радиуса r (). Найти вероятность того, что круг пересечет некоторую полосу.

Решение. В качестве элементарного исхода этого испытания будем считать расстояние x от центра круга до осевой линии ближайшей к кругу полосы. Тогда все пространство элементарных исходов – это отрезок . Пересечение круга с полосой произойдетв том случае, если его центр попадет в полосу, т.е., или будет находится от края полосы на расстоянии меньшем чем радиус, т.е..

Для искомой вероятности получаем: .

Классификация событий на возможные, вероятные и случайные. Понятия простого и сложного элементарного события. Операции над событиями. Классическое определение вероятности случайного события и её свойства. Элементы комбинаторики в теории вероятностей. Геометрическая вероятность. Аксиомы теории вероятностей.

1. Классификация событий

Одним из основных понятий теории вероятностей является понятие события. Под событием понимают любой факт, который может произойти в результате опыта или испытания. Под опытом, или испытанием, понимается осуществление определённого комплекса условий.

Примеры событий:

– попадание в цель при выстреле из орудия (опыт - произведение выстрела; событие - попадание в цель);

– выпадение двух гербов при трёхкратном бросании монеты (опыт - трёхкратное бросание монеты; событие - выпадение двух гербов);

– появление ошибки измерения в заданных пределах при измерении дальности до цели (опыт - измерение дальности; событие - ошибка измерения).

Можно привести бесчисленное множество подобных примеров. События обозначаются заглавными буквами латинского алфавита и т д.

Различают события совместные и несовместные. События называются совместными, если наступление одного из них не исключает наступления другого. В противном случае события называются несовместными. Например, подбрасываются две игральные кости. Событие -выпадание трех очков на первой игральной кости, событие- выпадание трех очков на второй кости.и- совместные события. Пусть в магазин поступила партия обуви одного фасона и размера, но разного цвета. Событие- наудачу взятая коробка окажется с обувью черного цвета, событие- коробка окажется с обувью коричневого цвета,и- несовместные события.

Событие называется достоверным, если оно обязательно произойдет в условиях данного опыта.

Событие называется невозможным, если оно не может произойти в условиях данного опыта. Например, событие, заключающееся в том, что из партии стандартных деталей будет взята стандартная деталь, является достоверным, а нестандартная - невозможным.

Событие называется возможным, или случайным, если в результате опыта оно может появиться, но может и не появиться. Примером случайного события может служить выявление дефектов изделия при контроле партии готовой продукции, несоответствие размера обрабатываемого изделия заданному, отказ одного из звеньев автоматизированной системы управления.

События называются равновозможными, если по условиям испытания ни одно из этих событий не является объективно более возможным, чем другие. Например, пусть магазину поставляют электролампочки (причем в равных количествах) несколько заводов-изготовителей. События, состоящие в покупке лампочки любого из этих заводов, равновозможны.

Важным понятием является полная группа событий. Несколько событий в данном опыте образуют полную группу, если в результате опыта обязательно появится хотя бы одно из них. Например, в урне находится десять шаров, из них шесть шаров красных, четыре белых, причем пять шаров имеют номера. - появление красного шара при одном извлечении,- появление белого шара,- появление шара с номером. Событияобразуют полную группу совместных событий.

Введем понятие противоположного, или дополнительного, события. Под противоположным событием понимается событие, которое обязательно должно произойти, если не наступило некоторое событие. Противоположные события несовместны и единственно возможны. Они образуют полную группу событий. Например, если партия изготовленных изделий состоит из годных и бракованных, то при извлечении одного изделия оно может оказаться либо годным - событие, либо бракованным- событие.

2. Операции над событиями

При разработке аппарата и методики исследования случайных событий в теории вероятностей очень важным является понятие суммы и произведения событий.